
Introduction Kernel Toolchain Future

PaX - kernel self-protection

PaX Team

H2HC 2012.10.09

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Introduction
Design concepts

Kernel

Toolchain

Future

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Design concepts

Overview

I Host Intrusion Prevention System
I Focus: exploit techniques against memory corruption bugs
I Threat model: arbitrary read-write memory access
I Bugs vs. Exploits vs. Exploit techniques
I Performance vs. Usability
I 2000-2012, linux 2.2-3.6

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Design concepts

Bugs

I Buffer overflows (stack/heap/static data)
I Heap object mismanagement (double free, use-after-free, etc)
I Integer overflows (underallocation, buffer overflow, reference

counts, etc)
I see http://cwe.mitre.org/
I Known/unknown (0-day)
I None of this matters :)

PaX - kernel self-protection

http://cwe.mitre.org/


Introduction Kernel Toolchain Future

Design concepts

Exploit Techniques

I Execute new (injected) code (shellcode)
I Execute existing code out-of-(intended)-order (return-to-libc,

ROP/JOP)
I Execute existing code in-(intended)-order (data-only attacks)
I Increasing order of difficulty
I Decreasing amount of control

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Introduction

Kernel
Non-executable pages (KERNEXEC)
Userland/kernel separation (UDEREF)
Userland/kernel copying
(USERCOPY/STACKLEAK/SANITIZE)
Reference counter overflows (REFCOUNT)

Toolchain

Future

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Non-executable pages (KERNEXEC)

Overview

I Implements non-executable page behaviour (where there is no
direct hardware support)

I Makes data pages non-executable (anything but kernel and
module code)

I Makes read-only data actually read-only in the page tables
I Makes some important kernel data read-only (IDT, GDT,

some page tables, CONSTIFY, __read_only, etc)
I i386: segmentation
I amd64: NX bit (except very early Intel P4 Xeon CPUs)

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Non-executable pages (KERNEXEC)

KERNEXEC/i386 Overview

I Idea: have __KERNEL_CS cover only kernel code
I base: __PAGE_OFFSET+__LOAD_PHYSICAL_ADDR
I limit: 4GB during init, _etext after free_initmem

I Excludes userland for free (unlike on amd64, but there is
SMEP to the rescue :)

I Special problems: logical/linear translations, relocations,
modules and .init code

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Non-executable pages (KERNEXEC)

KERNEXEC/i386 Problems

I Problem: kernel assumes logical address == linear address,
no longer true for code (function pointers)

I Needs translation (ktla_ktva and ktva_ktla) for:
I runtime patching and probing (alternatives, backtrace, ftrace,

kprobes, lockdep, perf, etc)
I module loading (relocation)

I Relocatable kernel does no longer need relocations for code

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Non-executable pages (KERNEXEC)

KERNEXEC/i386 Module handling
I Module code must be allocated within __KERNEL_CS

I Module data is a separate allocation
I Module read-only data is allocated with the code

I Preallocated area in vmlinux at compile/link time, size is
configurable

I Fragmentation can be a problem
I Consumes (reserves) physical memory in the direct mapping

even when no modules are loaded
I Module loader allocates code and data separately, special

allocator for code under KERNEXEC/i386

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Non-executable pages (KERNEXEC)

KERNEXEC/i386 Initialization code handling

I Kernel initialization code is discarded at runtime
I Still must be within __KERNEL_CS during init
I Placed along with the other init code/data

I Its memory is freed/reused

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Non-executable pages (KERNEXEC)

KERNEXEC/amd64 Overview

I Idea: remove rwx mappings from the kernel virtual address
range

I Establishes more control over kernel page tables (per-cpu pgd)
I kmaps: tool for auditing a page table hierarchy

I More details than CONFIG_X86_PTDUMP

I Special problems: modules, vsyscall, BIOS/ACPI (ioremap)
I Does not prevent userland code execution per se

I KERNEXEC gcc plugin
I CR4.SMEP

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Non-executable pages (KERNEXEC)

KERNEXEC/amd64 Problems
I Module problem: one contiguous rwx allocation (before the

days of CONFIG_DEBUG_SET_MODULE_RONX)
I Reuses KERNEXEC/i386 module loader logic (was already in

generic kernel code anyway)
I Module code/rodata vs. data

I vsyscall problem: page mapped twice (rw-, r-x), abused by
an exploit for CVE-2009-0065

I ioremap problem: too easy access to physical memory
I No access allowed above 1MB
I No more sensitive data in the first 1MB

PaX - kernel self-protection

http://kernelbof.blogspot.com/2009/04/kernel-memory-corruptions-are-not-just.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0065


Introduction Kernel Toolchain Future

Userland/kernel separation (UDEREF)

Overview

I Prevents unintended userland accesses from the kernel
I Intended accesses via explicit accessors only: *copy*user*,

*{get,put}_user
I NULL pointer dereferences
I ’magic’ poison value dereferences
I AMD catalyst bug

I i386: segmentation
I amd64: paging
I Haswell and CR4.SMAP, see our blog

PaX - kernel self-protection

http://forums.grsecurity.net/viewtopic.php?f=7&t=3046


Introduction Kernel Toolchain Future

Userland/kernel separation (UDEREF)

UDEREF/i386
I Expand down kernel data segment (__KERNEL_DS) prevents

userland access
I Intended accesses use segment override prefix (gs) with

__USER_DS
I Segment prefix collides with stack smashing protector (SSP)

I Default userland code/data segments prevent kernel access
I TLS/LDT still have to be allowed, kernel doesn’t use them

I kernel-to-kernel copying (set_fs)
I Used to patch __USER_DS to change its limit
I Nowadays switches gs between 0, __USER_DS or __KERNEL_DS

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Userland/kernel separation (UDEREF)

UDEREF/amd64
I Idea: unmap userland while executing in the kernel

I Remaps it elsewhere (shadow) as non-executable
(KERNEXEC)

I Obvious performance impact, thanks to AMD for killing
segmentation

I Requires per-cpu top-level page directory (pgd) for
SMP/multi-threaded apps

I Performance optimizations
I Context switch copies a few pgd entries only, one cacheline’s

worth
I No TLB flush on kernel->userland transitions

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Userland/kernel separation (UDEREF)

per-cpu pgd concept
I Idea: instead of a single per-process pgd have one per-cpu

I Allows local (per-cpu) changes to the process memory map
I swapper_pg_dir (init_level4_pgt on amd64) is kept as

master pgd for the kernel
I cpu_pgd[NR_CPUS][PTRS_PER_PGD] array

I Invariant: cr3 on cpuN must always point to cpu_pgd[N]
I Reduces number of userland pgd entries (256 vs. 8 on

amd64), reduces ASLR (5 bits less)
I 8 entries occupy one cache line

I Future optimization: per-process pgd can be reduced to the
userland pgd entries only

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Userland/kernel separation (UDEREF)

per-cpu pgd management

I When allocating the per-process pgd:
I pud tables (8 of them on amd64) are allocated as well
I They are never freed while the process is alive

I The per-process pgd does not have the kernel pgd entries
I Prevents its accidental use in cr3

I switch_mm: calls __clone_user_pgds and
__shadow_user_pgds

I clone: sets up the normal userland pgd entries in cpu_pgd[N]
I shadow: sets up the shadow userland mapping in cpu_pgd[N]

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Userland/kernel copying (USERCOPY/STACKLEAK/SANITIZE)

Overview
I Bounds checking for copying from kernel memory to userland

(info leak) or vice versa (buffer overflow)
I spender’s idea: ksize can determine the object’s size from

the object’s address
I Originally heap (slab) buffers only
I Limited stack buffer support (see Future section)
I Disables SLUB merging
I Data lifetime reduction: STACKLEAK and SANITIZE
I Process kernel stack clearing (STACKLEAK)

I Enhanced with a gcc plugin
I Freed page clearing in the low level page allocator (SANITIZE)

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Userland/kernel copying (USERCOPY/STACKLEAK/SANITIZE)

USERCOPY
I Instruments copy*user functions to call

check_object_size when size is not a compile-time constant
I check_object_size is implemented for SLAB/SLUB/SLOB
I Only slabs marked with the SLAB_USERCOPY flag are let

through
I cifs_request, cifs_small_rq, jfs_ip, kvm_vcpu,

names_cache, task_xstate
I All kmalloc-* slabs (for now)
I Some kernel code is patched to reduce flag proliferation

I Limited stack buffer checking (object_is_on_stack)
I Current function frame under CONFIG_FRAME_POINTER
I Current kernel stack without CONFIG_FRAME_POINTER

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Userland/kernel copying (USERCOPY/STACKLEAK/SANITIZE)

STACKLEAK
I Idea: reduce lifetime of data on process kernel stacks by

clearing the stack on kernel->user transitions
I Per-arch hooks in the low-level kernel entry/exit code
I Moved thread_info off the stack

I Initially blind memset on the entire kernel stack (8 kbytes)
I Too slow (unused part of the stack is cache cold)

I Refinement: detect/clear only the used part of the stack
I Looks for memset pattern from stack bottom to top
I Optimization: check only a certain length (cache line)

I Needs to record stack depth in functions with a big stack
frame

I Manual inspection and patching
I Instrumentation by a gcc plugin

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Userland/kernel copying (USERCOPY/STACKLEAK/SANITIZE)

STACKLEAK
I Special paths for ptrace/auditing

I Low-level kernel entry/exit paths can diverge for
ptrace/auditing and leave interesting information on the stack
for the actual syscall code

I Problems: still considerable overhead, races, leaks from a
single syscall still possible

I Solution: dual process kernel stack, one used only for copying
to/from userland

I Needs static analysis to find all local variables whose address is
sunk into copy*user

I New gcc plugin, LTO

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Userland/kernel copying (USERCOPY/STACKLEAK/SANITIZE)

SANITIZE
I Reduces potential info leaks from kernel memory to userland
I Freed memory is cleared immediately in

free_pages_prepare
I Optimization: prep_new_page does not need to handle

__GFP_ZERO
I Low-level page allocator, not slab layer
I Works on whole pages, not individual heap objects

I Kernel stacks on task death
I Anonymous userland mappings on munmap

I Anti-forensics vs. privacy

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Reference counter overflows (REFCOUNT)

Overview

I Detects reference counter overflows
I Idea: detect signed overflow (in the middle of the counter

space, INT_MAX+1)
I Linux refcounts are based on atomic_t and atomic64_t
I Per-arch assembly accessors, access to CPU flags
I False positives: not all variables of these types are refcounts

(statistics, unique ids, bitflags)
I Manual auditing, should be automated (gcc plugin)

I armv6+/sparc64/x86, soon powerpc

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Introduction

Kernel

Toolchain
GCC plugins
Kernel stack information leak reduction (STACKLEAK)
Read-only function pointers (CONSTIFY)
KERNEXEC/amd64 helper plugin
Integer (size) overflows (SIZE_OVERFLOW)
Latent Entropy Extraction (LATENT_ENTROPY)

Future
PaX - kernel self-protection



Introduction Kernel Toolchain Future

GCC plugins

Overview

I Idea: add special instrumentation during compilation to
detect/prevent entire bug classes at runtime

I Loadable module system introduced in gcc 4.5
I Loaded early right after command line parsing
I No well defined API, all public symbols available for plugin use
I Typical (intended :) use: new IPA/GIMPLE/RTL passes

I Plugins can sign up for events, insert/remove/replace passes
I No (easy) access to language frontends

PaX - kernel self-protection



Introduction Kernel Toolchain Future

GCC plugins

Introduction to gcc
I Compilation process is a pipeline, driven by the compiler driver
I Language frontend parses the source code and produces

GENERIC/GIMPLE
I Plugins can implement new attributes and pragmas, inspect

structure declarations and variable definitions (gcc 4.6+)
I Static Single Assignment (SSA) based representation

I First set of optimization/transformation passes runs on
GIMPLE (-fdump-ipa-all, -fdump-tree-all)

I Data structures: gimple, tree
I GIMPLE is lowered to RTL (pre-SSA gcc had only this)
I Second set of optimization passes runs on RTL

(-fdump-rtl-all)
I Data structures: rtx, tree

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Kernel stack information leak reduction (STACKLEAK)

Overview

I First plugin :)
I Idea: insert function call to pax_track_stack if local frame

size is over a specific limit
I pax_track_stack records deepest used kernel stack pointer

I Problem: frame size info is available at the last RTL pass
only, too late to insert complex code like a function call

I New strategy: instrument every function first and remove
unneeded instrumentation later

I Also finds all (potentially exploitable :) alloca calls

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Kernel stack information leak reduction (STACKLEAK)

STACKLEAK

I GIMPLE pass: inserts call to pax_track_stack into every
function prologue

I unless alloca is in the first basic block
I alloca is bracketed with a call to pax_check_alloca and

pax_track_stack

I RTL pass: removes unneeded pax_track_stack calls
I if the local frame size is below the limit
I if alloca is not used

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Read-only function pointers (CONSTIFY)

Overview

I Automatic constification of ops structures (200+ types in
linux)

I Structures with function pointer members only
I Structures explicitly marked with a do_const attribute

I no_const attribute for special cases
I Unfortunately many ops structures want to be written at

runtime
I Local variables not allowed (compiler error generated)

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Read-only function pointers (CONSTIFY)

CONSTIFY
I PLUGIN_ATTRIBUTES callback: registers do_const and

no_const attributes
I Linux code patched by hand
I Could be automated (static analysis, LTO)

I PLUGIN_FINISH_TYPE callback: sets TYPE_READONLY and
C_TYPE_FIELDS_READONLY on eligible structure types

I Only function pointer members, recursively
I do_const is set, no_const is not set

I End result is that the frontend will do the dirty job of
enforcing C variable constness

I GIMPLE pass: constified types cannot be used for local
variables (stack is writable :)

PaX - kernel self-protection



Introduction Kernel Toolchain Future

KERNEXEC/amd64 helper plugin

Overview

I Goal: prevent executing userland code on amd64
I Idea: set most significant bit in all function pointers

I Userland addresses become non-canonical ones, GPF on any
dereference

I GIMPLE pass: handles C function pointers
(execute_kernexec_fptr)

I RTL pass: handles function return values
(execute_kernexec_retaddr)

PaX - kernel self-protection



Introduction Kernel Toolchain Future

KERNEXEC/amd64 helper plugin

KERNEXEC/amd64 helper plugin

I Two methods: bts vs. or (reserves %r10 for bitmask)
I Compatibility vs. performance
I Special cases: vsyscall, assembly source, asm()

I kernexec_cmodel_check to exclude code in vsyscall sections
I Manual verification/patching
I GIMPLE pass to reload r10 when clobbered by asm()

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Integer (size) overflows (SIZE_OVERFLOW)

Overview
I Detects integer overflows in expressions used as a size

parameter: kmalloc(count * sizeof...)
I Written by Emese Révfy, extends spender’s old idea

(preprocessor trick)
I Initial set of functions/parameters marked by the

size_overflow function attribute
I Walks use-def chains and duplicates statements using a

double-wide integer type
I SImode/DImode vs. DImode/TImode
I Special cases: asm(), function return values, constants

(intentional overflows), memory references, type casts, etc
I More in our blog

PaX - kernel self-protection

http://forums.grsecurity.net/viewtopic.php?f=7&t=3043


Introduction Kernel Toolchain Future

Integer (size) overflows (SIZE_OVERFLOW)

SIZE_OVERFLOW
I PLUGIN_ATTRIBUTES callback: size_overflow attribute,

takes arbitrary arguments (size parameter index)
I Only a handful of functions are marked by hand
I Hash table lookup for the rest (could be automated with LTO)

I GIMPLE pass: handle_function enumerates all function
calls looking for the size_overflow attribute (or hash table)

I handle_function_arg starts the real work
I Manually walks the use-def chain of the given function

argument
I Walk forks on binary/ternary operations and phi nodes
I Walk stops at asm/call stmts, function parameters, globals,

memory references, constants, etc

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Integer (size) overflows (SIZE_OVERFLOW)

SIZE_OVERFLOW

I When a walk stops, stmt duplication begins
I New variable is created with signed_size_overflow_type
I DImode or TImode (signed)

I When stmt duplication reaches the original function call, the
duplicated result is bounds checked

I Against TYPE_MAX_VALUE/TYPE_MIN_VALUE
I Optimization: check omitted if the walk did not find any stmt

that could cause an overflow

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Latent Entropy Extraction (LATENT_ENTROPY)

Overview

I Goal: extract entropy from kernel state during boot
I Inspired by https://factorable.net/
I USENIX Security Symposium, August 2012
I Problem: much less entropy after boot than needed
I Result: vulnerable RSA and DSA keys used for SSH/TLS
I Some fixes in Linux but can we do better?

PaX - kernel self-protection

https://factorable.net/


Introduction Kernel Toolchain Future

Latent Entropy Extraction (LATENT_ENTROPY)

LATENT_ENTROPY
I Idea: compute a hash-like function embedded in the control

flow graph of kernel boot code
I Similar and also simpler approach already in Phrack 66
I Insert a random combination of ADD/XOR/ROL insns into

every basic block
I Mix end state into a global variable in the function epilogues
I Feed global variable (entropy) into the kernel entropy pools

after each initcall
I Entropy is not actually accounted for until someone

cryptanalyzes this whole thing :)
I More info on our mailing list

PaX - kernel self-protection

http://www.phrack.org/issues.html?issue=66&id=15
http://grsecurity.net/pipermail/grsecurity/2012-July/001093.html


Introduction Kernel Toolchain Future

Future
LLVM/Clang
Link-Time Optimization (LTO)
Control flow enforcement (CFE)
Data flow enforcement (KERNSEAL)
Miscellaneous

PaX - kernel self-protection



Introduction Kernel Toolchain Future

LLVM/Clang

Overview

I http://llvm.org and http://clang.llvm.org
I Mostly works with linux-side patches only
I clang 3.1 and -integrated-as, .code16gcc/.code16
I -fcatch-undefined-behavior (ext4 triggers it on mount)
I LTO
I Port the gcc plugins to llvm
I New plugins for clang (not really feasible with gcc)

PaX - kernel self-protection

http://llvm.org
http://clang.llvm.org


Introduction Kernel Toolchain Future

Link-Time Optimization (LTO)

Overview
I Idea: run optimization passes on one big translation unit

combined from all source files
I Allows whole program analysis

I Mostly works with gcc 4.7
I Takes 5 minutes and 4GB RAM on a quad-core Sandy Bridge
I Problems: KALLSYMS, tracing, initcalls, section attributes
I Better support for other plugins (CONSTIFY, REFCOUNT,

SIZE_OVERFLOW, STACKLEAK, USERCOPY)
I New plugins: static stack overflow checking, sparse attributes,

etc

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Link-Time Optimization (LTO)

LTO plans

I CONSTIFY: find all non-constifiable types/variables
I REFCOUNT: find all non-refcount atomic_t/atomic64_t

uses
I SIZE_OVERFLOW: walk use-def chains across function calls,

eliminate the hash table
I STACKLEAK: find all local variables whose address sinks into

copy*user
I USERCOPY: find all kmalloc-* slab allocations that sink

into copy*user

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Control flow enforcement (CFE)

Overview

I Against the “execute existing code out-of-(intended)-order”
exploit technique

I Compiler plugin to instrument all function pointer dereferences
I (No) support for binary-only modules
I Assembly source: manual instrumentation
I Runtime code generation (JIT compiler engines) support
I Performance impact is critical (<5% desired), very hard

problem

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Data flow enforcement (KERNSEAL)

Overview

I Against the “execute existing code in-(intended)-order”
technique

I Ensures that certain kernel data cannot be modified
unintentionally (arbitrary write bug)

I Credential structures, memory management data, filesystem
metadata/data (page cache), etc

I Needs lots of infrastructure:
I Read-only slab and kernel stacks (except for the current one :)
I Efficient hardware support is missing (SMAP v2?)

PaX - kernel self-protection



Introduction Kernel Toolchain Future

Miscellaneous

Overview

I Android port
I Better virtualization support

I virtualbox, vmware, xen
I More architecture support (especially kernel self-protection)
I Heap (slab) hardening
I CPU cores dedicated to security
I Your ideas :)

PaX - kernel self-protection



http://pax.grsecurity.net
http://grsecurity.net

irc.oftc.net #pax #grsecurity

http://pax.grsecurity.net
http://grsecurity.net

	Introduction
	Design concepts

	Kernel
	Non-executable pages (KERNEXEC)
	Userland/kernel separation (UDEREF)
	Userland/kernel copying (USERCOPY/STACKLEAK/SANITIZE)
	Reference counter overflows (REFCOUNT)

	Toolchain
	GCC plugins
	Kernel stack information leak reduction (STACKLEAK)
	Read-only function pointers (CONSTIFY)
	KERNEXEC/amd64 helper plugin
	Integer (size) overflows (SIZE_OVERFLOW)
	Latent Entropy Extraction (LATENT_ENTROPY)

	Future
	LLVM/Clang
	Link-Time Optimization (LTO)
	Control flow enforcement (CFE)
	Data flow enforcement (KERNSEAL)
	Miscellaneous


