
Introduction Return Address Protection Indirect Control Transfer Protection

RAP: RIP ROP

PaX Team

H2HC 2015.10.24

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

Introduction
PaX/grsecurity

Return Address Protection

Indirect Control Transfer Protection

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

PaX/grsecurity

Overview

I Host Intrusion Prevention System
I 15 years: 2000-2015, linux 2.2-4.2
I Focus: exploitation of memory corruption bugs
I Threat model: arbitrary read-write memory access
I Bugs vs. Exploits vs. Exploit techniques
I Privilege abuse vs. Privilege escalation
I Performance vs. Usability

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

PaX/grsecurity

Memory Corruption Bugs

I Unintended control over address/content of memory access
I “Precursor” bugs included (memory disclosure, unintended

reads, etc)

I Two generic goals:
I Find them in the source
I Catch them before they trigger

I Too many kinds to cover them with universal approaches
I see http://cwe.mitre.org/

RAP: RIP ROP

http://cwe.mitre.org/

Introduction Return Address Protection Indirect Control Transfer Protection

PaX/grsecurity

Threat Model
I Union of the powers (unintended sideeffects) of all possible

memory corruption bugs
I Arbitrary read-write memory access
I Bug can be triggered:

1. for arbitrary addresses
2. with arbitrary content
3. arbitrary operation
4. arbitrary number of times
5. at arbitrary times

I Privilege abuse: exercise existing powers for unintended
purposes

I Privilege escalation: gain new powers (to subsequently abuse
them)

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

PaX/grsecurity

Exploit Techniques & Defenses

Execute new (injected) code
(shellcode)

Non-executable pages, runtime
code generation control, ASLR

Execute existing code
out-of-(intended)-order
(return-to-libc, ROP/JOP)

Control flow integrity, RAP,
ASLR

Execute existing code
in-(intended)-order (data-only
attacks)

Open question (RANDSTRUCT,
KERNSEAL, etc)

I Increasing order of difficulty
I Decreasing amount of control

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

PaX/grsecurity

Exploit Techniques vs. Memory Corruption Bugs

Abuse/Escalation Shellcode Code Reuse Data-only
CVE-xxxx-xxxx " " "

CVE-xxxx-xxxx "

CVE-xxxx-xxxx "

0-day #1 "

0-day #2 " "

...
I PaX: started as a defense mechanism for the first column
I Lately: groups of rows (bug classes via gcc plugins)
I Today: second column

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

PaX/grsecurity

Code Reuse Attacks and Defenses
I Code pointer modification (unintended CFG edge)

I Return addresses
I Language level function pointers

I Virtual method table
I Signal handlers and signal return contexts
I Exception handling, setjmp/longjmp, landing pads

I Defenses (PaX future doc from 2003)
I Immutable (read-only) code pointers

I .rodata, RELRO, CONSTIFY, CPI/CPS
I Code pointer target verification

I CFI, RAP
I Limited performance budget as usual

RAP: RIP ROP

https://pax.grsecurity.net/docs/pax-future.txt
http://dslab.epfl.ch/proj/cpi/
http://research.microsoft.com/en-us/projects/gleipnir/

Introduction Return Address Protection Indirect Control Transfer Protection

Introduction

Return Address Protection
History
RAP

Indirect Control Transfer Protection

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

History

StackGuard 1997

I Developed in 1997, published in January 1998 at the USENIX
Security Symposium

I Crispin Cowan and others
I No formal threat model, mixes up bug category (buffer

overflow) with exploit techniques (code injection)
I Probabilistic defense
I Canary between saved return address and the rest of the stack

frame
I Canary: terminator, random
I No protection for other state (frame pointer, local variables,

arguments)

RAP: RIP ROP

https://www.usenix.org/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf

Introduction Return Address Protection Indirect Control Transfer Protection

History

StackGuard 1999 (XOR canary)

I Attack by Mariusz Woloszyn (emsi) in PHRACK 56 in May
2000

I Abuses unprotected local pointer variable

I Response: encrypt/decrypt return address by a random key
I Credited to Aaron Grier
I Mentioned in US7752459 (PointGuard patent)

I Released in StackGuard 1.21 in November 1999, abandoned
later without explanation

RAP: RIP ROP

http://phrack.org/issues/56/5.html
http://marc.info/?l=bugtraq&m=94218618329838&w=2
http://www.google.com/patents/US7752459
http://marc.info/?l=bugtraq&m=94218618329838&w=2

Introduction Return Address Protection Indirect Control Transfer Protection

History

Stack Shield 1999

I Released in August 1999 by Vendicator
I No formal threat model
I Shadow stack and range checking for return addresses

I Deterministic defense

I No attack detection originally, added in v0.5
I Limited function pointer protection (range checking) in v0.6

RAP: RIP ROP

http://www.angelfire.com/sk/stackshield/

Introduction Return Address Protection Indirect Control Transfer Protection

History

Propolice/Stack Smashing Protector (SSP) 2000

I Developed by Hiroaki Etoh (IBM Japan) and announced on
the gcc and bugtraq lists in August 2000

I Patented (lapsed):US6941473

I No formal threat model
I Probabilistic defense
I Protects the frame pointer, some local variables, arguments
I Served as basis for Microsoft’s /GS and Red Hat’s

reimplementation for gcc 4.1 (February 2006)
I -fstack-protector vs. -fstack-protector-all vs.

-fstack-protector-strong (gcc 4.8)

RAP: RIP ROP

http://marc.info/?l=gcc&m=96574973405308&w=2
http://marc.info/?l=bugtraq&m=96585353414428&w=2
http://www.google.com/patents/US20010013094

Introduction Return Address Protection Indirect Control Transfer Protection

RAP

Overview

I Threat model: arbitrary read-write access
I Except the ’at arbitrary times’ part

I Conceptually based on the XOR canary approach
I Probabilistic defense
I Performance tweaks without sacrificing security
I Main pass is in GIMPLE, not RTL

I Mostly architecture independent
I Single callee saved reserved register (RAP cookie), (r12 on

amd64)
I Hard to leak (uninstrumented asm code)

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

RAP

RAP Example

push %rbx
mov 8(%rsp),%rbx
xor %r12,%rbx
...
xor %r12,%rbx
cmp %rbx,8(%rsp)
jnz .error
pop %rbx
retn
.error:
ud2

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

RAP

RAP (kernel)
I RAP cookie changes:

I Per task
I Per system call
I Per iteration in selected infinite loops

I Long running event handlers (idle loop, kthreadd, etc)
I Could be automated perhaps

I Unreadable kernel stacks
I Prevents cross-task infoleaks and corruption
I Needs per-cpu pgd (already developed for

KERNEXEC/UDEREF)
I Implementation problem: waitqueue structs

I Move them off the kernel stack

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

RAP

RAP (userland)

I XOR canary method is vulnerable to arbitrary reads
I ASLR helps a bit: two leaks are needed

I encrypted return address
I plaintext code address (not necessarily the return address)

I Combine with return place (code pointer target) verification

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

RAP

Performance Optimizations
I Reduce coverage without sacrificing security

I Unlike ssp and ssp-strong
I Compute ’can corrupt memory’ property for each function and

basic block
I Propagate it up the call hierarchy

I Omit instrumentation if the function cannot corrupt memory
I About 9% of kernel functions untouched, 15% in chromium

I Basic block coverage narrowing
I Up to 40% of kernel functions, 8% in chromium

I XOR elimination
I If the RAP cookie does not spill to memory (basic block

narrowing can help)
I About 6% of kernel functions

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

Introduction

Return Address Protection

Indirect Control Transfer Protection
History
Type-Based Self-Assembling Indirect Control Flow Graph

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

History

Overview
I Deterministic defense
I PaX future doc 2003
I CFI at CCS 2005
I Many more variants since (IFCC, VTV)
I Coarse-grained vs. fine-grained
I Fine grained approaches based on the Indirect Control Flow

Graph
I Hard to construct (undecidable in the general case)
I Approximations

I RAP: Type-Based Self-Assembling Indirect Control Flow
Graph

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

History

Fine-Grained Control Flow Integrity
I Constructing the ICFG is hard

I Vertices are easy
I Edges not so much

I Missing edges result in false positives
I Extra edges result in reduced security

I Access to entire code
I Dynamically loaded or generated code
I LTO, load time/runtime construction

I Vertex categorization
I Equivalence sets based on the ICFG
I Argument count
I Type based

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

Type-Based Self-Assembling Indirect Control Flow Graph

Overview
I Idea: construct the ICFG vertex categorization and have the

ICFG approximation emerge automatically
I Overapproximate the ICFG as much as the language rules allow
I Based on function and function pointer types
I False edges possible if unintended functions have the same type

I Indirect call elimination (devirtualization, etc)
I Type diversification

I Extract type information for each function and function
pointer

I Compute hash based on parts of the type
I Language construct dependent

I Verify matching hash value between function and function
pointer dereference (indirect call, function return, etc)

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

Type-Based Self-Assembling Indirect Control Flow Graph

Type Hash
I C functions and function pointers
I C++ functions and function pointers

I Non-class functions
I Static class member functions
I Non-virtual class member functions
I Virtual class member functions

I Ancestor method that every other method overrides

I Type parts
I Return type
I Function name
I Function parameters

I ’this’ parameter for non-static class member functions

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

Type-Based Self-Assembling Indirect Control Flow Graph

Type Hash Parts
Usable parts in type hash Return Name ’this’ Parameters

non-class or static member function/ptr Y N N/A Y
non-virtual method/ptr Y N N Y
virtual method/ptr N N N Y

ancestor method/virtual method call Y Y Y Y

I C++ virtual method return types can be covariant
I C++ method pointers can target both virtual and non-virtual

methods
I Ancestor method type can supplant all overriding method

types in virtual calls
I Compiler internal representation or source language text

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

Type-Based Self-Assembling Indirect Control Flow Graph

Type Hash Details

I Any hash function will do
I Initial state allows for easy binary diversification/watermarking
I Reduce output to desired size (e.g., 32 bits)

I Hash value range assignment:
I Positive numbers for functions and function pointers
I Negative numbers for function returns and return places
I Reserved value for functions whose address is not taken
I Reserved values for exception handling

(setjmp/longjmp/landing pads)

I Store as 64 bits (full sign extended 32 bit value)
I Verify as sign extended 32 bit value

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

Type-Based Self-Assembling Indirect Control Flow Graph

Indirect function call examples

cmpq $0x11223344,-8(%rax)
jne .error
call *%rax
...
cmpq $0x55667788,-16(%rax)
jne .error
call *%rax
...
dq 0x55667788,0x11223344
func:

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

Type-Based Self-Assembling Indirect Control Flow Graph

Function return example

call ...
jmp 1f
dq 0xffffffffaabbccdd
1:
...
mov %(rsp),%rcx
cmpq $0xaabbccdd,2(%rcx)
jne .error
retn

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

Type-Based Self-Assembling Indirect Control Flow Graph

Compatibility
I Observation: everyone gets function pointer casts wrong :)

I gcc(!), glibc, linux, chromium, etc
I Basic rule: function type must match function pointer type

used in the indirect call
I In-between casts to other function pointer types are allowed

I But almost everyone fails to convert back for the actual
indirect call

I Fixing these problems can uncover real bugs
I Two birds with one stone: might as well do type diversification

while at it
I Call to arms to fix all of them :)

I RAP related fixes

RAP: RIP ROP

https://grsecurity.net/~paxguy1/fptr-cleanup/

Introduction Return Address Protection Indirect Control Transfer Protection

Type-Based Self-Assembling Indirect Control Flow Graph

Compatibility examples

int (*fptr)(void *, int);
int func1(void *p, int i);
int func2(void *p);
char func3(void *p, int i);
int func4(struct1 *p, int i);
fptr = &func1; //correct
fptr = &func2; //wrong
fptr = &func3; //wrong
fptr = &func4; //wrong

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

Type-Based Self-Assembling Indirect Control Flow Graph

Performance
I Linux: both return address and function pointer protection

I Less than 5% on ’du -s’
I Over 25% for ssp-all

I xalancbmk: used in SPECCPU but this was the latest
xalan-c/xerces-c available in gentoo

I All dependencies with return address protection only (cf.
compatibility note before)

I Less than 4% on the SPEC reference test file
I chromium:

I All dependencies with return address protection only (cf.
compatibility note before)

I Less than 8% on dromaeo javascript tests (big variations, some
even better than baseline)

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

Type-Based Self-Assembling Indirect Control Flow Graph

Chromium 47.0.2526.16 Statistics

unique non-virtual virtual

functions 235196 159427

hashes 70498 44265

ratio (func/hash) 3.4 3.6

unique non-virtual virtual

indirect calls 10811 101552

hashes 6467 29567

ratio (call/hash) 1.7 3.4

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

Type-Based Self-Assembling Indirect Control Flow Graph

Chromium 47.0.2526.16 Top Ancestors

4050 base::internal::BindStateBase<Diversifier>::~BindStateBase() [with Diversifier = void()]
1976 virtual base::Pickle::~Pickle()
867 virtual blink::ScriptWrappable::~ScriptWrappable()
829 virtual ExtensionFunction::~ExtensionFunction()
707 virtual const blink::WrapperTypeInfo* blink::ScriptWrappable::wrapperTypeInfo() const
662 virtual google::protobuf::MessageLite::~MessageLite()
660 virtual int google::protobuf::MessageLite::GetCachedSize() const
660 virtual google::protobuf::MessageLite* google::protobuf::MessageLite::New() const
660 virtual void

google::protobuf::MessageLite::SerializeWithCachedSizes(google::protobuf::io::CodedOutputStream*)
const
660 virtual bool

google::protobuf::MessageLite::MergePartialFromCodedStream(google::protobuf::io::CodedInputStream*)
660 virtual int google::protobuf::MessageLite::ByteSize() const
660 virtual void google::protobuf::MessageLite::Clear()
660 virtual bool google::protobuf::MessageLite::IsInitialized() const
637 virtual std::string google::protobuf::MessageLite::GetTypeName() const
637 virtual void google::protobuf::MessageLite::CheckTypeAndMergeFrom(const

google::protobuf::MessageLite&)
501 virtual ui::LayerDelegate::~LayerDelegate()

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

Type-Based Self-Assembling Indirect Control Flow Graph

Indirect Function Call Conversion (Devirtualization)

I Observation: some hash values get assigned to a single virtual
method in a program

I All virtual method calls with the same hash can only resolve to
this one method

I Devirtualization opportunity missed by normal approaches

I Works for non-virtual methods and pointers too

RAP: RIP ROP

Introduction Return Address Protection Indirect Control Transfer Protection

Type-Based Self-Assembling Indirect Control Flow Graph

Summary

I RAP provides comprehensive indirect control flow protection
I Function returns

I Return address encryption (XOR canary): probabilistic, precise
I Return place type checking: deterministic, approximation

I Indirect calls
I Call target type checking: deterministic, approximation

I Very low performance impact
I Scales to real world software

RAP: RIP ROP

http://pax.grsecurity.net
http://grsecurity.net

irc.oftc.net #pax #grsecurity

http://pax.grsecurity.net
http://grsecurity.net

	Introduction
	PaX/grsecurity

	Return Address Protection
	History
	RAP

	Indirect Control Transfer Protection
	History
	Type-Based Self-Assembling Indirect Control Flow Graph

